A NEW SYNTHESIS AND CRYSTAL STRUCTURE OF N-(2-HYDROXYETHYL)SUCCINIMIDE

Haija Pitkänen,^a Ilkka Pitkänen,*^{,a} Hans-Erik Eriksson and Pekka Autio^a

^aDepartment of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3

SF-40100 JyvXskylE, Finland

(Received in UK 2 October 1987)

Abstract - N-(2-Hydroxyethyl)succinimfde was formed with 80 X yield in the reaction of 2-oxarolidtnone with succinic anhydride at 210 C instead of polyesteramides obtained from N-substituted 2-oxazolidinones. The identification based on the crystal structure determination.

INTRODUCTION

Several patents concerning the use and synthesis of N-(2-hydroxyethyl)succinimide have been reported during the past twenty years. N-Hydroxyalkylimides are generally important for polyesteramide manufacture.^{1,2} N-(2-Hydroxyethyl)succinimide provides means for selective extraction of aromatic hydro**carbons.3-6 It has also been patented as another starting material for polyester and cellulose acetate textile dyes.7**

N-(2-Hydroxyethyl)succinfmfde may be synthesized with good yields from succinic anhydride and ethanolamine,^{7,8} from succinic imide and ethylene carbonate,⁹ and from succinic imide and ethylene oxide.¹ In the present paper we report, as far as we know, a new method to synthesize N-(2-hydroxyethyl)succinimide by the reaction of succinic anhydride with 2-oxazolidinone. The reaction product **was identified by determining its crystal structure.**

RESULTS AN0 DISCUSSION

Synthesis

2-Oxarolidinone (1) and its derfvatfves are reactive 5-membered ring compounds. The reactions of succinic and phtalic anhydrides with N-substituted Z-oxazolidinones give in the presence of a few mole per cent of LiCl polyesteramides of molecular weights up to 3500 with high yields. lo The polymer yield corresponds to the CO₂ evolution indicating an equal consumption of oxazolidinone and **anhydrfde.l' 2-Oxazolidfnones may be regarded as ethylenefmfne derivatives due to their tendency to** split off CO₂. Succinic anhydride reacts similarly with ethyleneimine giving polyamide product in **acetone at 0 OC** . **l1**

However, as shown here, 2-oxazolidinone itself reacts with succinic anhydride in a different way. The reaction was conducted under optimum conditions for polyesteramide formation given by Burckhardt et al.¹⁰ 2-Oxazolidinone and succinic anhydride were heated with 1 mol.-% of LiCl at **210 'C in an oil thermostat while nitrogen gas was conducted through the smelt to remove CO2** liberated.¹² The evolution of CO₂ was followed by conducting the gases to a NaOH solution. Applica**tion of the method of Burckhardt et al, for the isolation of the expected polyesteramide (2) gave, however. no precipitate. Therefore, the following procedure was adapted: The cold reaction mixture, which was dark and viscous, was first treated with methanol (about 13 X remained unsoluble). After removal of the solvent the residue was further extracted with acetone (about 7 % remained unsoluble).** Fractionation of the acetone extract gave a white product at 174-176 ^OC / 5 mm Hg with 80 % yield **(mp. 59-60 'C after recrystallization from methanol). A molecular weight of 143 was obtained both osmometrically (benzene as a solvent) and ebulliometrfcally from methanol,**

$$
H_2C
$$
 = 0
\n H_2C = 0
\n H_2C = 0
\n $CH_2 - CH_2 - C$ = 0 - 0 - 0 = $CH_2 - CH_2 - CO$
\n(2)
\n(1)

In the acidic hydrolysis of this product (with 8-M HCl) succinic acid and monoethanolamine **hydrochloride (mp. 81-82 'C) were fsolated.13 Ethanolamine was liberated from the salt with alkali**

and was isolated as a phenylisothiocyanate derivative (mp. 133-134 'C).14 An alkaline hydrolysis with NaOH lead to the same products.

The minor reaction product, which was obtained with about 13 X yield on treating the crude mixture with methanol, was recrystallized from dichloroethane to a melting point of 153 'C. Ebulliometric molecular weight determination from chloroform gave 645. In the alkaline hydrolysis succinic acid was isolated, and a positive colour test with CuSO₄ was obtained for monoethanolamine.¹⁵ Thus, for the minor product the polyesteramide structure (2) is possible.

The structure verification of the main product was. however, difficult with spectroscopic methods. The IR spectrum of the polyesteramide product, obtained from 3-phenyl-2-oxarolidinone and succinic anhydride, is shown in the paper of Burckhardt et at.. and it displays a relatively intense band % 1500 cm-l. This band is known as the amide II band. It is a complex vibration attributed mainly to δ_{N-H} (bending in-plane) strongly coupled with v_{C-H} . The absence of amide II band from the **IR spectrum led us first consider a cyclic a-membered lactam-lactone structure of correct atomic** composition and molecular weight. The most intense peaks in the mass spectrum (see Experimental) **could arise from fragmentations characteristic to lactams and lactones. Also the *H-NMR spectrum (Experimental) could be explained by this structure. A single carbonyl carbon absorption in the 13C-NMR spectrum (Experimental) was, however, curious. The crystallographic analysis gave finally** unambiguously the 5-ring structure of N-(2-hydroxyethyl)succinimide, which is also consistent with **other experimental data.**

Crystal structure

The final positional parameters and temperature factors are listed in Table 1, bond distances in Table 2, least-squares planes in Table 3 and torsional angles in Table 4. A PLUTO projection drawing of the molecule is shown in Figure 1.

Table 1. Positional and isotropic thermal parameters with their e.s.d.'s in parentheses.

Starred atoms were refined isotropically. Anisotropically refined atoms are given in in the form of the isotropic equivalent displacement parameter defined as: $(4/3)$ * $[a2*B(1,1) + b2*B(2,2) + c2*B(3,3) + ab(cos gamma)*B(1,2) + ac(cos beta)*B(1,3)$ **t bc(cos alpha)*B(2,3)]**

Table 2. Bond lengths (A) and bond angles (O) with their e.s.d.'s in parentheses.

The 5-ring is unregular due to the presence of the heteroatom N(1) and the different surroun-Hngs of C(2) and C(5) from those of C(3) and C(4). The rlng part of the molecule is nearly planar ITable 3) because of the sp2-hybrfdlzed C(2) and C(5). However, it is possible to set a plane through N(1). C(2). C(3) **and O(2) within e.s.d.'s and another through N(l), C(4). C(5) and O(5). kcording to the torsional angles the 5-ring has a half-chair conformation.16 Also C(6) is in the Ilane** N(l), C(2), C(3) **and O(2) within e.s.d.'s. The ring bond lengths are slightly shorter than torrespnndlng formal single bonds, and C(2) - O(2) and C(5) - O(5) are clearly double bonds (formal C=O 1.22 A).17**

Table 3. Least-squares planes (x.y and z are ortogonal coordinates) 0.2572x-D.g227y-0.287Oz+5.8857=0

Figure 2. PLUTO plot of the molecular structure

Table 4. Torsional angles in degrees

The side-chain shows disorder in single crystals. There are two different positions for the OH**group In the molecular structure. A multiplicity of 0.5 was used for O(81) and O(82) in the refinement. The bond length 0(81)-C(7) (1.32 A) or 0(82)-C(7) (1.29 A) is shorter than a single C-O bond** (formal C-O 1.43 A) but longer than a double bond (1.22 A). Because the thermal parameters are nor**lnal for these positions this disorder is rather static than dynamic free rotation.**

The refined hydrogen atoms, H(31)...H(62), are as expected. When 0(81) and 0(82) were refined with the multiplicity of 0.5, H(72), H(81) and H(82) have a very low electron density. However, H(71), H(81) and H(82) were found from a difference Fourier electron density map. As C(7) is tetragonally (sp³) hybridized C(7)-H(72) must be to the same direction with C(7)-O(81) or, alternatively, **with ~(7)-0(82).**

There is an intermolecular hydrogen bond $0(82)-H(82)$ ^{**}0(5) with an oxygen-oxygen distance of **2.808(8) A.** The **H(82)"'0(5) distance fs 1.776 A and the angle 0(82)-H(82)"'0(5) 159.7'. This** hydrogen bond is, however, weak. The oxygen-oxygen distance is longer than the normal bond between **rifI9 carbonyl oxygen and alcohol oxygen (2.64 A), and also the angle differs from the right line by 20.30.**

EXPERIMENTAL

2-Oxazolidinone (mp. 88-89 $^{\circ}$ **C)** was prepared from dichloroethane, NH₃ and CO₂.¹⁸ A Mechrolab Inc. Osmometer Model 301A was used for the molecular weight determination. Elementar analysis was per**formed with** a **F 6 M Analyzer Mdel 185: C 50.58 X (theor. 50.35 I), H 6.36 X (theor. 6.34 X), N 9.55 % (theor. 9.78 X).**

Spectroscopic methods

The IR spectrum was recorded on a Perkin-Elmer 283 spectrometer (1 mg/188 mg KBr). ¹H- and ¹³C-NMR spectra were obtained on a Perkin-Elmer R12B (60 MHz) and a JEOL FX 60 spectrometer, respectively. The ¹H-NMR shifts for 5 **X** d₆-acetone solution are: 2.69 ppm (s), 3.64 ppm (t, poorely resolved), and after the addition of 1-2 drops of d₅-pyridine the broad 0-¹H absorption at \sim 4.12 ppm with respect to internal TMS. The ¹³_G chemical shifts and ¹³C-¹H coupling constants for 50 % solution are: C-2, C-5 178.6 ppm; C-3, C-4 28.7 ppm ("J_{C-H}136.2 Hz, "J_{C-H}4.1 Hz); C-6 41.5 ppm ("J_{C-H}140.6 Hz), C-7 **59.1 ppm ('JC_H144.0 Hz, 2JC,H3.5 Hz).**

The mass spectrum was taken at 70 eV on a Varian MT-212 spectrometer connected to a Varian Fidel 3700 gas chromatograph (equipped with a quarz capillary column, 25 m x 0.32 I.D., with bonded SE 54 coating of 0.1 pm thickness). Mass spectral data were acquired and processed on a Spectro System MAT-188. The five most intense peaks appear at m/e values 100 (100, rel.int. %), 55 % (48.5), **113 (35). 56 (30.5) and 84 (30.5).**

Crystallographic method

Colourless crystals for the X-ray structure determination were obtained by recrystallization from acetone. Data was collected on a Enraf-Nonius CAD-4 dfffractometer and structure solved with computer programs MULTAN11/82¹⁹, SDP²⁰ and PLUTO.²¹ Conditions for data collection and crystal data are **listed 1; Table 5.**

Table 5. Crystal data and experimental parameters

- **1. R.B. Steele,** J.J. **Scigliano and A. Katraklan, Jr., Ger. Offen., 2, 357, 936 (Cl. C 08g)(1974); C.A. g: P31878q (1975).**
- **2. K. krata. Japan. 71 37. 338 (Cl. C 07d)(1971); C.A. 76: P13848b (1972).**
- **3. H.M. Weitz and E. Fuerst, Ger. Offen., 1, 902, 461** (Cl. C lOg)(1970); C.A. 73: P68272c (1970).
- 4. H.M. Weitz and E. Fuerst, Ger. Offen., 2, 158, 609 (C1. C 07c)(1973); C.A. 79: P78064z (1973).
- 5. H.M. Weitz and E. Fuerst, U.S., 3, 803, 258 (C1. 260-681.5R; C 07c)(1974);C.A. 81:P26185m (1974).
- **6. G. Preusser. K. Richter and M. Schulze. Ger. Offen., 2. 013. 298 (Cl. C** lOg)(1971); C.A. 76: P48044p (1972).
- 7. **R.R. Giles and H.A. Ueaver. U.S., 3, 394, 144 (Cl. 260-326)(1968); C.A. 69: P78441p (1968).**
- **8. A.F. Nikolaev and S.N. Ushakov, Izvest. Akad. Nauk S.S.S.R.. Otdel. Khim. Nauk, 1235** (1957); C.A. $52: 6283a$ (1958).
- 9. Y. **Ishido, T. Yoshino, S. Inaba and H. Komura. Japan Kokai 75 04, 012 (Cl. 168602.3)(1975); C.A. 83: P114815p (1975).**
- **10. S. Burckhardt. K.-H. Reichert and K. Hamann. J. Polymer Science, 4 Part A-l. 1245 (1966) and references therefrom.**
- 11. **K. Fukui, T. Kagiya, T. Shimizu, 5. Narisawa and K. Hanabe. Japan. 6272 (-67) (Cl. 26 CO)(1963); C.A. 67: P54620d** (1967).
- 12. This reaction was studied by H.-E. Eriksson under the leadership of prof.G.A. Nyman, see ref.18.
- 13. A value of 82-83 ^OC is given by J.H.J. Jones, Assoc. Official Agr. Chem., 27, 467 (1944); C.A. **2: 62757** (1944).
- **14. A melting point of 138 'C is given in F.J. Smith and E. Jones, A Scheme of qualitative Organic Analysis, Blackie 6 Son Ltd., London,** 1962. p. 111.
- 15. **H. Jesserer and F. Lieben, Biochem. Z., 292. 421 (1937).**
- **16. H.F.C. Ladd and R.A. Palmer, Structure Determination by X-Ray Crystallography, Sec.ed., Plenum Press, New York, 1985, p. 352.**
- **17. Ibid, p. 359.**
- **18. H.-E. Eriksson, Diploma work, Helsinki Univ. of Technology, Dept. of Chem.. Finland, 1966.**
- **19. P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germsin. J.-P. Declere and H.H. Woolfson, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Univs. of York, England, and Louvain. Belgium, 1982.**
- **20. B.A. Frenz, The Enraf-Nonius CAD4 SDP-A Real-Time System for Concurrent X-Ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, ed. H. Schenk. R. Olthof-Hazelkamp. H. van Konigsveld and G.C. Bassi.Delft Univ. Press, 1978. pp. 64-71.**
- **21. W.D.S. Motherwell and W. Clegg, PLUTO. A Program for plotting molecular and crystal structures, Univ. of Cambridge, England, 1978.**